大数据技术与应用专业就业前景怎么样呢?
来源:    发布时间: 2019-07-02 08:08   59 次浏览   大小:  16px  14px  12px
大数据技术与应用专业就业前景怎么样呢?

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  推荐于2018-02-27展开全部大数据技术与应用专业或相关专业就业前景相当广阔。

  近几年来,互联网行业发展风起云涌,而移动互联网、电子商务、物联网以及社交媒体的快速发展更促使我们快速进入了大数据时代。截止到目前,人们日常生活中的数据量已经从TB(1024GB=1TB)级别一跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别,数据将逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。大数据时代,专业的大数据人才必将成为人才市场上的香饽饽。

  因此,当下大数据从业人员的两个主要趋势是:1、大数据领域从业人员的薪资将继续增长;2、大数据人才供不应求。

  另外,大数据专业毕业生就业岗位非常多,比如:Java大数据分布式程序开发、大数据集成平台的应用与开发、大数据平台运维、Java海量数据分布式编程、大数据架构设计、大数据分析、Java大数据分布式开发、基于大数据平台的程序开发、数据可视化、大数据挖掘、Java海量数据分布式编程、大数据架构设计等。

  千锋教育专注HTML5前端、Java开发、Python全栈、UI设计、物联网嵌入式、区块链、大数据、人工智能、软件测试、PHP、云计算、信息安全、Unity游戏开发、红帽RHCE认证培训服务大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。例子还有很多。

  总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我们面前。

  展开全部大数据的就业主要有三个方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。

  ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

  新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。

  可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。

  信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。

  数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。

  OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。

  数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。

  预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。

  数据管理的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证市场数据的完整性,准确性,唯一性,真实性和不冗余。

  近几年来,互联网行业发展风起云涌,而移动互联网、电子商务、物联网以及社交媒体的快速发展更促使我们快速进入了大数据时代。截止到目前,人们日常生活中的数据量已经从TB(1024GB=1TB)级别一跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别,数据将逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。大数据时代,专业的大数据人才必将成为人才市场上的香饽饽。

  另外,大数据专业毕业生就业岗位非常多,比如:Java大数据分布式程序开发、大数据集成平台的应用与开发、大数据平台运维、Java海量数据分布式编程、大数据架构设计、大数据分析、Java大数据分布式开发、基于大数据平台的程序开发、数据可视化、大数据挖掘、Java海量数据分布式编程、大数据架构设计等。

  1、数据分析成为大数据技术的核心 数据分析在数据处理过程中占据十分重要的位置,随着时代的发展,数据分析也会逐渐成为大数据技术的核心。大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息。

  2、广泛采用实时性的数据处理方式 在现如今人们的生活中,人们获取信息的速度较快。为了更好地满足人们的需求,大数据处理系统的处理方式也需要不断地与时俱进。目前大数据的处理系统采用的主要是批量化的处理方式,这种数据处理方式有一定的局限性,主要是用于数据报告的频率不需要达到分钟级别的场合,而对于要求比较高的场合,这种数据处理方式就达不到要求。传统的数据仓库系统、链路挖掘等应用对数据处理的时间往往以小时或者天为单位。

  3、基于云的数据分析平台将更加完善 近几年来,云计算技术发展的越来越快,与此相应的应用范围也越来越宽。云计算的发展为大数据技术的发展提供了一定的数据处理平台和技术支持。云计算为大数据提供了分布式的计算方法、可以弹性扩展、相对便宜的存储空间和计算资源,这些都是大数据技术发展中十分重要的组成部分。

  4、开源软件的发展将会成为推动大数据技术发展的新动力 开源软件是在大数据技术发展的过程中不断研发出来的。这些开源软件对各个领域的发展、人们的日常生活具有十分重要的作用。开源软件的发展可以适当的促进商业软件的发展,以此作为推动力,从而更好地服务于应用程序开发工具、应用、服务等各个不同的领域。